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ABSTRACT

With the miniaturisation of magnetic components in power
supplies, increased switching frequencies in the kHz-MHz
range are required. But with these increased frequencies
comes the problem of increased winding losses due to
proximity effects. This paper describes how waveforms
encountered in switch-mode power supplies may be
incorporated into a transformer design algorithm, with
emphasis on minimising ac resistances (and hence power
dissipation) in the windings. Approximation formulee for
the optimum thickness of a foil have been found using
regression analysis and Taylor series approximations for
duty-cycle varying waveforms, and are given in terms of N,
the number of harmonics, and p, the number of layers of
foil required. These formule will be implemented as part
of the winding selection process in a Windows-based
package.

1. WAVEFORM ANALYSIS

The formula for the optimum thickness of a layer in a
transformer winding may be derived for waveforms with
varying and non-varying duty-cycles. This has been done
for a number of waveforms as shown in Table 1, and the
formula for a duty-cycle varying pulsed (or rectified square)
waveform is now derived as a sample case.

The waveform shown in Figure 1 is representative of the
current in a push-pull winding. I, is related to the dc
output current; for a 1:1 turns ratio, it is equal to the dc
output current for a 100% duty cycle.

Figure 1 can be taken as an even function about 0 as shown
in Figure 2. We shall take one period T (marked by dashed

arrow) to calculate the Fourier Series of i.

For a range (-1, 1), an even function has a Fourier Series of
the type f(x):
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f(x) = B, ZanCos— (1)
2 = 1

In our case, 1 = T/2, x = t and f(x) = i(t). Also, since ® =
2n/T, nnx/l = nnt2/T = nowt.

i(t) = %0 + iances(nmt) @

Calculating the Fourier coefficients an and ao yields
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Figure 1: Pulsed current waveform with a duty-cycle of D
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Figure 2: Same waveform taken as an even function
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These coefficients are then inserted into the expression for
i(t) giving
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The average value of current is Iac = I,D. The RMS value of
current is I,VD. Also, the Fourier Series of i can be
expanded as
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If D = 0.5, this reduces to
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The RMS value of the nth harmonic is
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The total power loss is P = Refilims? which is made up of the
dc component and the harmonics:

P=R.I% + R, [T + R, I5+..
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= Rdclgc + zRacnIi
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R?Acn is the ac resistance due to the nth harmonic, and is

given by

R, =k, R (10)

ac

where k, is the proximity effect factor due to the nth

harmonic [1]. Thus, P is equal to

P =Ry 1% +Re. D Kk, T1 (11)
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Since P = RI2,. , the above can be rearranged to give
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The pulse in Figure 1 is an ideal case. Normally, there
would be a rise time and fall time associated with the
waveform so that a finite number of harmonics are
required. Typically, the upper limit on the number of
harmonics is

35
t.%

N = 13)

where t: is the percentage rise time and N is odd. For
example, a 2.5% rise time would give N = 13.

Define R;s as the dc resistance of a foil of thickness 8., where
8, is the skin depth at the fundamental frequency of the
pulsed waveform. Ra. is the dc resistance of a foil of
thickness d and

R, _d_,
Ry &
de o (14)
= Reff — Reff/Rdc
R, A

The ratio R, /R; is given the name k., and for a given

frequency, Rs and &, are constant. Evidently, a plot of k.
versus A has the same shape as a plot of Retr versus d.

The x-axis is increasing foil thickness. For A < Ay, the de
resistance decreases as the thickness increases; however
for A > Aop, the ac effects are greater than the effect of
increased thickness. The minimum ac resistance is given
at Aopt and the optimum thickness is

dype = Ay -0 (15)
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Figure 3: Plot of k: versus A for 13 harmonics and various
numbers of layers (D = 0.5)

The effective ac resistance of a foil of thickness d is
R, = k,R; = kAR, (16)

Assuming a maximum of N harmonics, k: is obtained from
(12) and (14):
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k, 1is given by Dowell's formula [1]:

Sinh(2v/nA) + Sin(2v/nA) N

- Cosh(2ynA) - Cos(2VnA) )

2(p* —1) Sinh(vnA) - Sin(vnA)
3 Cosh(vnA) + Cos(vnA)

where p is the number of layers of foil. The skin depth at
the nth harmonic is
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2.24 mm diameter 0.13 mm x 30 mm

Figure 4: Round versus foil conductor
Example: Push-Pull Converter

Take D = 0.5, p = 6, t,. = 2.5%, and f = 50 kHz.

85 _36 _
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Choose N = 13, since N is odd. From the graph of k,. versus
A for p = 6 in Figure 3
k, =312andA,, =043

Topt

3, 66 =0.295 mm

x/50 X 103

The optimum foil thickness is equal to

dgpe = Ay, = 043x0.295 = 013 mm

opt’
and the ac resistance is
R, = k,AR,, = 312x 0.43R,, = 1L.34R,,

A 2.24 mm diameter of bare copper wire has the same
copper area as a 0.13 mm x 30 mm foil. The skin effect
factor of the round conductor is given by

k, =025+ 0.5(;—0] =025+ 05(3.8) = 215

o

This is for the fundamental frequency only. Evidently in
this case, the choice of a foil conductor is vastly superior.

2. APPROXIMATE ANALYSIS

The following general approximations can be made:

Sinh(24) +Sin(24) 1 A"
Cosh(2A)-Cos(24) A  a

(21)
Sinh(A) -Sin(A) _ A

Cosh(A) + Cos(A) b

where a and b are constants. The values of a and b may be
arrived at by using either of two methods. The first one
involves expanding the trigonometric functions in (21)
using Taylor's series and limiting them to a set number of
terms:
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This method yields a = 7.5 and b = 6. Alternatively, a and b
may be obtained by approximating the full trigonometric
expressions in (21) using regression analysis over a
particular range of A. This method yields a better

approximate fit over that range. For A between 0.1 and 1.0,
a=11.57 and b = 6.18.

The proximity effect factor is then given by
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Substituting this expression into k. gives
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The derivative of k; with respect to A is used to calculate
the optimum value of A:
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If D = 0.5, then the formula for Ay is given by
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Example: Push-Pull Converter

Take D =0.5, p =6, t, = 2.5%, and f=50kHz.
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Choose N =13, since N is odd.
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The optimum foil thickness is equal to

=041

3+1

)(0.135 x 62 + 0.027)

=0.295 mm

dope = A,

opt

=041x0.295=012 mm

The value of k; is calculated using the following formula
derived from (24):

N

4

2
T

T
0.41

05+ %(1.198)

(12‘1}(0 111(6)" + 0.022)(0.41)3

=319 exact is 3.12

The ac resistance can now be evaluated as

R.s = k,AR,, = 319x 041R,,
=131R,, exact is 1.34R,,

CONCLUSIONS

The derivation of an approximate formula for the optimum
thickness of a high frequency transformer winding has
been described for the case of a rectified square waveform,
and similar formule have been derived for other waveforms
as shown in Table 1.
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Table 1: Formule for the optimum thickness of a winding for various waveforms, a="7.5,b = 6




