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Abstract—With the proliferation of Smart Cities, more and
more live data sources such as webcam feeds and physical sensor
information are publicly accessible over the Web. However, these
sources are typically decoupled from normal websites, and are
therefore not within the scope of traditional online search using
Web search engines. In this paper, we focus on websites that
refer to physical locations (e.g., restaurants, hotel, shops) for
which live sensor data and information might be available. We
propose G-SENSING, our platform for the seamless integration
of live data into the normal browsing experience of online users.
In a nutshell, we provide a browser add-on that injects sensor
information into Google result pages for each result that refers
to a physical place. Our backend infrastructure consists of a
data repository connecting websites to physical locations, as well
as a data source for sensor information based on Linked Data
principles. In our evaluation, we first show that websites referring
to places are a very common phenomenon, thus motivating the
potential benefits of G-SENSING. Furthermore, we show that
our system only adds a small overhead to normal bandwidth
requirements when browsing the Web.

I. INTRODUCTION

Finding relevant and reliable information on the Web is a
non-trivial task, yet the tools to help us do this have reached a
high level of maturity. For example, Google not only indexes
all Web information, but also provides good results from
the information that is contained within online fora, social
networks, etc. We argue, however, that there are search requests
that cannot be satisfied by traditional browsing or by existing
technologies. The focus of this paper is on users searching
for information about real-world locations such as hotels,
restaurants, bars, shops, as well as offices, governmental or
private institutions. A user’s location-related information needs
often refer to data which is only valid for very specific and
short time frames. As a result, they are typically not maintained
on a Web page, let alone indexed by a search engine.

EXAMPLE 1: Consider a user who is searching for an
acupuncture clinic so as to book a visit. Using Google and
Google Maps for example, the user can find suitable candidates
in a given area as well as links to their official websites. Such
websites usually provide information about the services that
they offer, contact details, and maybe some pictures. The user
can also read reviews about the clinic on recommender sites
such as WHATCLINIC.COM. However, the user might also be
interested in live data which could help them with their choice
of a clinic, e.g., data about the number of free parking spaces
close to the clinic or the number of customers currently in the
waiting room.

In recent years, there has been a tremendous uptake in
the deployment of sensors within the concept of Smart Cities,
including live camera feeds, weather sensors, etc. Data streams
from such sensors are often publicly accessible, but are usually
decoupled from other related Web resources (in our case,
websites referring to real-world places near a specified geo-
location). From a website provider’s perspective, integrating
live data is costly. Firstly, the data is distributed across different
sources, i.e., live data providers. This includes that the number
of sources may change over time. Secondly, the typically static
websites have to be modified to accommodate the nature of
data streams.

In this paper, we present G-SENSING, our approach to-
wards the seamless integration of live sensor data into a
user’s normal browsing experience. To accomplish this, as
a frontend application, G-SENSING features a browser add-
on. The add-on injects live sensor information into Google
search result pages – that is, if a search result refers to a real-
world location, the add-on requests relevant sensor data from
the backend and displays it directly next to the corresponding
result. Regarding our backend as a source of live data, we aim
for an open and flexible infrastructure that will allow us to
easily change between different publicly available data sources.
As a set of minimum requirements, a G-SENSING-enabled
data source must (a) expose a SPARQL endpoint to query the
data, (b) provide semantically annotated sensor data, and (c)
register on DATAHUB1 with its sensor tag metadata. For our
current system we have implemented LD4S (Linked Data for
Sensors), which fulfils all three requirements. LD4S can be
queried using SPARQL or via a RESTful API using the JSON
data format. For our evaluation, we randomly generated sensor
readings and metadata for 30 sensors. They were divided into
groups of 10 sensors, each deployed within 1 km from three of
the Galway acupuncture clinics listed in the first Google search
result page. We achieved optimal performances at a minimum
cost of bandwidth increase (only 30 KB).

The paper outline is: Section II describes G-SENSING,
highlighting the core aspects of the browser add-on frontend
application and of our LD4S backend infrastructure. Section III
presents the results of our evaluation to illustrate the practical-
ity of our system. Section IV provides a discussion and outlines
a roadmap for our ongoing and future work. Section V reviews
related work to put our approach into context. Section VI
concludes this paper.

1http://datahub.io/



II. G-SENSING

The most common way to discover sensor data sources (as
well as the live data itself) is through the means of dedicated
platforms. For example, users can browse DATAHUB’s list of
publicly accessible sensors. However, this decouples live data
from the more traditional Web resources like websites, and
therefore puts them somewhat out of the reach of normal users
who are browsing and searching the Web. We argue, however,
that users’ search requests often refer to information about
a physical location. In these cases, users could potentially
benefit from the information stemming from live data that
is typically not shown on websites relating to a particular
location. Regarding Example 1, the websites of acupuncture
clinics are unlikely to provide information about the number of
currently available parking spots nearby. G-SENSING supports
a seamless integration of live data into the user’s normal
browsing experience. G-SENSING features an add-on that
injects relevant live sensor information into GOOGLE search
result pages (at present, with more to be added later). The
sources of sensor data are registered datasets on DATAHUB.
This approach allows the use of different and/or multiple
datasets as data sources for the live data to be requested by
our add-on. With LD4S, we have implemented our dataset
of semantically-annotated sensor data, and registered it on
DATAHUB.

A. Frontend Application – Browser Add-On

Once a user has installed our add-on, it performs the
following two event-driven tasks: discovery of (new) data
sources after starting the browser, and requesting / injecting
live data after loading a new Web page.

(1) Discovery of data sources. We aim for an open and
flexible infrastructure that allows us to easily change between
different publicly available data sources. We only assume
that such data sources expose a SPARQL endpoint to query
the data, provide semantically-annotated sensor data, and are
registered on DATAHUB with sensor-tag metadata. DATAHUB
is a data management platform from the Open Knowledge
Foundation that exposes a JSON API to access metadata
from the registered datasets. Anyone can register a dataset
for free and specify its copyright, its access endpoints, and
the type of data contained therein. As a result, the set of
available data sources can change over time. To reflect this,
we request information about available data sources registered
on DATAHUB each time a user opens the browser. For each
dataset retrieved, we verify whether it is publicly open and
whether it exposes one or more SPARQL endpoints. If so,
we forward a SPARQL query to get the sensor details for the
coordinates of interest from each SPARQL endpoint.

(2) Content request and injection. The add-on listens to
each page load event. If a new page has been loaded into the
browser, Algorithm 1 is executed. We first test if the new page
is a GOOGLE results page (Line 2). For the time being, we limit
ourselves to GOOGLE result pages, but intend to extend our
idea to any Web pages that refer to geographic locations (see
Section IV for details). We then extract all individual search
results from the page (Line 3). For each result, we first extract
the URL of the link (Line 5) and request any place information
that is associated with that URL by sending a search request

to our backend (Line 6). If the URL is linked to a physical
location, we again send a request to the backend to fetch all live
data from each of the discovered data sources for that location
(Line 8). Finally, we update the result dictionary (Line 9) and
return the dictionary (Line 13).

Algorithm 1: handlePageLoad(url)
1 liveDataMap ← {};
2 if isGoogleSearchResult(url) = True then
3 searchResults ← extractSearchResults(url);
4 foreach result ∈ searchResult do
5 resultUrl ← result.url;
6 place ← requestPlaceData(resultUrl);
7 if place != ⊥ then
8 liveData ← requestLiveData(place.coords);
9 liveDataMap[resultUrl] ← liveData;

10 end
11 end
12 end
13 return liveDataMap;

Having received all of the live data, the add-on displays the
data next to the corresponding search result by injecting the
content into the HTML page. Figure 1 is an example screen-
shot showing the additional live data provided for acupuncture
clinics in Galway, Ireland.

Fig. 1. G-Sensing overlays sensor data and metadata referring to the virtual
representations of real places among Google search results in the browser.

B. Backend – LD4S and Semantics

Our backend (acting as the source of live data) feeds the
browser extension with sensor readings and sensor metadata
queried across distinct distributed datasets. We have developed
an open and flexible infrastructure that can alternate between
different publicly available data sources and which is based
on specific design choices. Such choices include a focus on
specification-based sensor representation, storage and retrieval,
using the Resource Description Framework (RDF), and fol-
lowing the principles of ontology reuse and Linked Data.
RDF is a standard model2 for data interchange on the Web
designed to facilitate data merging, especially in cases where
the underlying schemas differ. This allows us to be schema-
independent when forwarding our query across distributed
datasets.

2http://www.w3.org/RDF/



RDF extends the linking structure of the Web to
use URIs to name the relationship between things, as
well as the two ends of the link. This is usually re-
ferred to as a triple. For example, a triple in our model
would be <SensorTemporalProperty, hasLocation,
Place>, i.e., <subject, predicate, object> as shown
in Listing 1. Such a linking structure creates a directed,
labelled graph, where resources are nodes and edges are
named links between two resources. This simple model allows
structured and semi-structured data to be mixed, exposed and
shared across different applications. Several syntaxes exist for
serialising RDF graphs. In this paper we will use Turtle.3

In order to disambiguate the terms SensorTemporalProp-
erty, hasLocation and Place used as subject, predicate and
object in the example, we address each term with the
URI of their representation. This also allows us to place
these terms in relation to other terms (concepts) of the
ontologies, thus modelling the concept that each term rep-
resents. For example, assuming we use a SPITFIRE on-
tology that has the namespace spt, the DOLCE ontol-
ogy that has the namespace dul, and a Semantic Sensor
Network-related ontology that has the namespace ssn, our
previous triple becomes <spt:SensorTemporalProperty,
dul:hasLocation, ssn:Place>. Each URI of the form
<namespace>:<conceptID> will return the description of
a concept. However, this also allows us to disambiguate a con-
cept’s meaning if a community gradually converges towards
an agreement on which ontologies to use, i.e., adhering to the
ontology reuse principle. For this reason, we have only used
already existing, widely used and design-approved ontologies,
including the W3C Semantic Sensor Network (SSN) ontol-
ogy [3], the SPITFIRE [2] ontology,4 DOLCE Upper-Level
Concepts,5 and the LD4S namespace to access the data stored
in its own triple store. Also, to support future reasoning over
concepts, we chose ontologies in languages that fully support
logic inference, e.g., OWL.6

Linked Data principles [1] state that the above mentioned
URIs should also be HTTP URLs which, when dereferenced,
should return a proper RDF description of the concept they
represent with RDF links to external resources. RDF links are
triples where the object is located in an external dataset. We
believe that such principles will become even more relevant
with the development of the Internet of Things, since mobility
and pervasiveness of the available data will need to be reflected
by cross-linked public datasets.

The Simple Protocol and RDF Query Language
(SPARQL)7 defines a standard query language and data
access protocol for use with the RDF data model. SPARQL
allows us to gather information from RDF graphs in the form
of subgraphs, URIs, blank nodes or literals. It also allows
us to construct new RDF graphs based on the information
contained in the queried graphs. We rely on SPARQL because
it is specifically designed for running cross-dataset queries
which are becoming increasingly relevant with the advent of
the Internet of Things.

3http://www.w3.org/TeamSubmission/turtle/
4http://spitfire-project.eu/ontology/ns/
5http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS Ultralite
6http://www.w3.org/TR/owl-ref/
7http://www.w3.org/TR/sparql11-query/

We used an RDF-based representation [4] so that sen-
sor readings and metadata are described by <subject,
predicate, object>-type triples in a graph.

The sensor location and feature of interest are part of a
separate graph of information that may change over time, e.g.,
in case of a sensor being attached to a different feature and/or
being mobile. Listing 1 shows the RDF serialisation of such
a graph, where the start and end time validity for this set
of properties is specified (by the predicates spt:tStart and
spt:tEnd).

Listing 1. Example showing a representation of some sensor data.
ld4s:sensorID12

a spt:SensorTemporalProperty;
ssn:featureOfInterest ld4s:parkingLot;
spt:temporalOf ld4s:2_99;
spt:tStart "2013-03-31T01:00:00Z"

ˆˆxsd:dateTime;
spt:tEnd "2015-05-31T01:00:00Z"

ˆˆxsd:dateTime;
dul:hasLocation ld4s:herbClinic.

ld4s:herbClinic
a ssn:Place.

As mentioned, each entity in a triple is represented by a
HTTP URI that can be browsed online to retrieve further RDF
information on the entity itself. The intrinsic nature of RDF
facilitates the export of knowledge across different systems.
This, combined with linking whenever possible of each entity
to external structured definitions, and with ontology reuse,
allows us to avoid ambiguities.

However, annotating sensor data and metadata semanti-
cally, while referring to external definitions, and storing them
in triple stores is expensive and constitutes a learning barrier.
For this reason, we have implemented and used LD4SENSORS
(LD4S) [11] as a JSON Web service which exposes a RESTful
API to automate the annotation and linking process. LD4S uses
the JENA library and the JENA triple DB. Semantically linked
sensor annotations as described above can be created, stored
and edited through the LD4S API8 or GUI,9 where users can
submit raw information via common HTML forms and they
can be searched via the LD4S SPARQL endpoint.

The semantic annotation can be enriched by searching for
relevant external links among Linked Open Dataset (LOD)
resources – indexed by Sindice10 – after creating a query
according to criteria specified by the user, such as domain
and/or context (i.e., time, space, thing). According to the
specific criteria matched by the LOD resources, a different type
of RDF predicate (e.g., spt:sameDomain, spt:sameThing,
spt:sameTime, spt:sameSpace) is used in the named RDF
link to the external resource of interest. In fact, we believe that
for links having external data to be useful, they must change
dynamically according to the specific use case.

In particular, we have used the online available instance of
LD4S11 to store – and later search for – sensor readings and

8http://spitfire-project.eu/incontextsensing/apiDocumentation.php
9http://jbossas7-huangyuan.rhcloud.com/spitfire-gui/
10http://sindice.com/
11http://spitfire-project.eu:8182/ld4s/ping



Fig. 2. Qualitative illustration of the coverage and distribution of places
associated with a website across the city of Galway.

metadata that we previously generated randomly for our eval-
uation experiments. The LD4S SPARQL endpoint is published
on DataHub12 to facilitate its discovery by third parties.

III. EVALUATION

We considered three acupuncture clinics based in Galway,
Ireland. We randomly chose them from the first page of
GOOGLE’s search results for the query ”acupuncture galway
salthill”,13 Acupuncture & Chinese Herbal Medicine Clinic,14

Acupuncture Galway Clinic15 and Evidence-Based Therapy
Centre.16 We randomly generated data and metadata for sen-
sors deployed at different latitude and longitude coordinates
within 1 km (approximately 0.009 degrees) of the coordinates
of our three acupuncture clinics.

We simulated the deployment of groups of 10 sensors near
each of the three acupuncture clinics of interest. A script
implemented in JavaScript generated readings and metadata
for a total of 30 sensors. It then forwarded PUT requests to
LD4S for semantically linking, annotating and storing of such
data (as described in Section II-B).

We crawled GOOGLE PLACES to collect all places within
the city of Galway. Our current dataset contains 3,692 loca-
tions, 1,455 (39.4%) of which are associated with a website,
i.e., they have a URL.

A. Analysis of Data Repository

We first looked at the coverage, i.e., how much of the area
defined by the virtual locations, i.e., places associated with
a website, together with their vicinity radiuses overlaps with
the city of Galway. Figure 2 illustrates the coverage with a
vicinity radius of r = 150m. To get more quantitative results,
Figure 3(a) shows the percentage coverage as we vary the
vicinity radius. Naturally, the coverage increases for larger r,
resulting in up to 72% coverage for r = 250m. Regarding the
distribution of virtual locations (i.e., real places that have a
corresponding official website as their virtual representation),
we divided the areas of Galway into squares with different side
lengths l and counted the number of virtual locations within
each square. Figure 3(b) shows the percentage of non-empty

12http://datahub.io/dataset/ld4s-linked-sensor-data
13https://www.google.ie/#q=acupuncture+galway+salthill
14http://www.acupunctureandherbclinic.ie
15http://www.acupuncturegalway.com
16http://www.ebtc.ie/acupuncture

squares, which naturally increases for larger-sized squares.
Empty squares typically cover city parks or purely residential
areas. Figure 3(c) shows the distribution of non-empty squares
for l = 100m. Not unexpectedly, the number of virtual
locations per square and their respective frequency shows a
power-law relationship: while most squares only contain a
small set of locations, a few squares will contain a very large
number of locations (e.g., city centres, business parks). Given
these results, we argue that there are many websites that refer
to physical locations, emphasizing the added value of our
approach for integrating live data into such websites.

B. Performance

For the performance experiments, we installed the browser
add-on on commodity hardware equipped with an Intel Core
2 Duo processor and 305 GB of disk space. To be of practical
use, we required that G-SENSING would not significantly add
to a user’s bandwidth consumption. We used the LD4S service
instance running on an external server in order to support and
test a modular and distributed architecture.

On average, GOOGLE result pages were around 145 KB in
size. When G-SENSING is enabled, the bandwidth consump-
tion is around 175 KB, an increase of just 30 KB (∼20%).
Part of the bandwidth consumption can also be attributed to
the use of HTTPS rather than HTTP. 20% is a modest but
reasonable additional overhead, particularly, since the overhead
is comprised of information that is useful to the user. In our
ongoing work, we aim to filter the requested live data by
tailoring it to the information needs of an individual user (cf.
Section IV).

Apart from the overhead in terms of required bandwidth,
we also measured the average time to request and receive the
live data. For this, we first forwarded a query to the DATAHUB
API to retrieve all of the available sensor datasets. This
represents the data sources discovery task during a browser
start-up. The execution time was 3 milliseconds and returned
20 datasets, out of which three had an open license and
also exposed a SPARQL endpoint. Among these, LD4S was
actually the only accessible source, so the average response
time for SPARQL queries we run is actually referring only to
queries running on LD4S. Listing 2 shows an extract of one of
these queries (the namespace prefixes have been omitted for
clarity) which is used to retrieve sensors within a specific time
range and near certain location coordinates. LD4S provided a
response to the query in Listing 2 within 246 milliseconds.

Listing 2. SPARQL query targeting sensor data in a time and location range.
SELECT ? s e n s ? s t a r t t i m e ? end t ime ? obs
? f o i ? v a l u e ? l o c a t i o n
{ ? s e n s s p t : obs ? obs .

? ov s p t : ou tOf ? s e n s ;
s p t : v a l u e ? v a l u e ;
s p t : t S t a r t ? s t a r t t i m e ;
s p t : tEnd ? end t ime .

? t s p s p t : t e m p o r a l O f ? s e n s ;
s s n : f e a t u r e O f I n t e r e s t ? f o i ;
wgs : l a t ? l a t i t u d e ;
wgs : l ong ? l o n g i t u d e .

FILTER (
xsd : da teTime ( ? s t a r t t i m e ) >=

’2014−11−30T02 : 0 0 : 0 0 Z ’
ˆ ˆ xsd : da teTime
[ . . ]
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Fig. 3. Coverage and distribution analysis regarding virtual locations across the city of Galway, Ireland.

&& xsd : d oub l e ( ? l a t i t u d e ) <=
’ 5 3 . 2 6 9 2 1 2 0 ’ ˆ ˆ xsd : do ub l e )
[ . . ] .

}

IV. DISCUSSION & ROADMAP

Our experimental results demonstrate that: (a) websites
about or referring to real-world locations are a common phe-
nomenon in urban areas; (b) the performance of G-SENSING
does not impede on a user’s browsing experience in terms of
the average response time and additional bandwidth overhead.
At present, we also note that there is limited availability of
sensor datasets that are both open and public, while some of
the SPARQL endpoints for such open and public datasets were
inaccessible. However, we expect a larger number of available
as well as accessible datasets in the future, since providing
public data via a standardized access mechanism is still quite
a recent trend.

Beyond search result pages. For the time being, we are
showing live data alongside GOOGLE search results. Our add-
on-based approach can, in practice, allow us to inject sensor
information into any website. For example, we could display
information about the parking situation around a restaurant on
the restaurant’s official website. With this, users can benefit
from live data during normal browsing sessions, i.e., while
navigating from website to website without relying on explicit
search requests.

Extended linkage. So far, we have linked Web content
with geolocations using public data crawled from GOOGLE
PLACES, where many locations are associated with a URL
(typically the websites of hotels, restaurants, shops, etc.). In
the next step, we aim to extend these connections by injecting
sensor information into other Web pages that also refer to
such venues. For example, we are currently extending our
data repository by crawling user reviews from TRIPADVISOR.
Linking the review URLs to geolocations using our existing
GOOGLE PLACES data will enable us to show relevant live data
to users who are reading reviews on TRIPADVISOR. In the long
run, we will explore which types of connections are meaningful
in a given application context and how such connections can
be established. For example, we envision displaying the latest
webcam feeds showing a location that is mentioned in a news
article. Creating such links in an automatic and reliable manner
is a challenging task.

User-centric live data representation. The G-SENSING
output relevancy for an end user depends on the user’s current
interests and on the type (and low level location) of sensor

data displayed, e.g., sensor data about occupancy in the
clinic waiting room or in the surrounding parking area, rather
than sensor data about the temperature of the fridge in the
clinic’s kitchen. Future releases of our system will include a
recommender system that decides whether to display or not the
retrieved sensor data according to a prediction of their current
relevancy for the user.

V. RELATED WORK

Sensors on the Web. Several efforts have tried to make
sensors accessible from the Web, enabling the so-called Sensor
Web. This includes standards defined by the Open Geospa-
tial Consortium’s (OGC) Sensor Web Enablement (SWE)
project [16]. In addition to SensorML [7], they defined the
Sensor Observation Service framework (SOS) [15] which
enables publishing and accessing of sensor data using XML-
based protocols and APIs.17 The usage of XML means that
ad-hoc mappings of different schemas are needed to integrate
data. Thus, SOS, like all the other OGC standards, neither
enables semantic interoperability nor supports reasoning.

Semantic Sensor Web [19] investigated a semantic version
of the OGC vision. A semantic extension to OGC’s SOS
was developed, SemSOS [6] (Semantic Sensor Observation
Service). In parallel, the W3C Semantic Sensor Network
(SSN) Incubator Group, realized an ontology [3], based on
SensorML, adopted by several research projects and which also
LD4S relies on. This ontology aims to provide cross-domain
concepts for sensors, and was inspired by several domain-
specific ontologies that existed previously. It supports annota-
tions of sensor-related features, e.g., deployment, observations
and measurement capabilities. Thus, it enables the automation
of further tasks like fine-grained discovery (e.g., a search for
sensors which are observing wind direction with a specific
accuracy level and maintenance scheduling).

A further step in using simple semantic annotations is to
follow Linked Data principles as in our LD4S. To the best
of our knowledge, this has not yet been done for dynamic
sensor datasets, mainly due to the lack of dereferencable URIs
which point to the sensor data source, i.e., the sensor that
generated the data. The usefulness of the external links found
for sensor data has been investigated by [12], where [10]
stressed the importance of contextual information for sensor
data. Finally, a relevant attempt to implement an RDF triple
store and brokerage system on the sensor nodes themselves
has been successfully accomplished by [5].

17http://www.opengeospatial.org/standards/sos



Map interface for sensors. In line with efforts to make
sensors accessible from the Web, several projects have focused
on overcoming sensor network heterogeneity. They usually
create an abstraction layer and visualize sensors on world
maps. Microsoft’s SensorMap [14] mashes up sensor data from
a worldwide heterogeneous sensor network (SenseWeb) on
a map interface and provides interactive tools to selectively
query sensors and visualize data, along with authenticated
access to manage sensors. This was followed by similar
efforts since then, with GraphOfThings [17] being the most
recent one. While we also rely on latitude and longitude
coordinates to locate a sensor device, we provide an alternative
perspective. Rather than representing the device location on a
map we represent it in relation to its already existing virtual
representation in the form of websites. Also, by injecting our
system into Google search results, we actually make sensors
more accessible to most Web users.

Virtual versus Real Spaces. The difference between real
and virtual places has been analysed in several research
areas including philosophy [9], e-learning [20], augmented
reality [8], collaborative software development [13], social
networking and communities [18], etc. More recently, von
der Weth et al. [21] proposed a scientific foundation for the
problem of mapping the physical presence of people in real
places to the online presences of users in virtual places (on
websites). Similar to this work, they propose enriching virtual
places with real information. However, they rely on users to
act as sensors, providing information about those real places in
a chat-type browser extension. This research is the closest so
far to our approach. We build on top of it, investigating the use
of sensor devices as opposed to human beings for providing
virtual content enriched with live data.

VI. CONCLUSIONS

In this paper, we have proposed an approach to bridge
the gap between the semi-static content offered by websites
and the short-lived information offered by sensors. While the
majority of sensor-related research goes in the direction of
dedicated platforms through which users can explore available
live data, we aim towards the seamless integration of sensor
information into users’ everyday browsing behaviors. As our
main contribution, G-SENSING offers live data tailored to
the information needs of online users of search engines. We
facilitate this by providing a browser add-on which injects
enriched sensor information into Google search results pages.
At the same time, we keep our data source as open and flexible
as possible, and approach the sensor data integration problem
in innovative ways. Our backend infrastructure exposes a GUI,
RESTful API and SPARQL endpoint to enable the annotation,
storage and retrieval of semantic sensor data. Our evaluation
showed both the potential benefits of G-SENSING and its
applicabilty for large-scale settings.

In ongoing and future work, we focus on two main direc-
tions. Firstly, we aim to adapt the live data displayed according
to a user’s current context – that is, we would expose, for
example, different types of sensor data to a user commuting
on a bus and a user sitting at home. This requires appropriate
context-modeling techniques as well as extending both the add-
on and backend infrastructure to support context-dependent
content delivery and presentation. Secondly, we want to extend

our browser extension to inject live data into any relevant Web
page referencing a physical location (e.g., the official websites
of hotels, restaurants, businesses) and not just into GOOGLE
result pages.
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